The importance of Genetics and Genomic tools in a changing industry

Marco Winters
DairyCo Breeding+

- Responsible for Genetic Evaluation in UK
 - Independent and Paid for by dairy farmers

- All breeds and crosses:
 - Production traits
 - SCC
 - Lifespan
 - Fertility Index
 - Type (excl. B&W)
 - Calving Ease
Who do we work with?

Breed Societies Milk Recording Service partner

Critical success factors;
Recording (ICAR accredited)
Collaboration – (inter)nationally
The Breeders ‘toolbox’

• Breeding has never been so easy!

• Many bulls on offer

• Many genetic indexes available to select on
 – Important to use UK validated indices

• However, they only add value if you use them!
Why is breeding important?

• Genes play important role in animal performance
 – Performance = Genetics + Environment

• Environment very important
 – Short term

• Genetic improvement is:
 – Permanent; long term solution
 – Cumulative over generations
 – Cost effective
Impact of Genetics – Milk yield

(AHDB – UK data 06/03/14)

<table>
<thead>
<tr>
<th>Year</th>
<th>Cow Numbers (x1000)</th>
<th>UK production (x 1m.)</th>
<th>Avg. Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>2,587</td>
<td>13,608</td>
<td>5,259</td>
</tr>
<tr>
<td>1997</td>
<td>2,478</td>
<td>13,846</td>
<td>5,586</td>
</tr>
<tr>
<td>1998</td>
<td>2,440</td>
<td>13,647</td>
<td>5,594</td>
</tr>
<tr>
<td>1999</td>
<td>2,440</td>
<td>14,035</td>
<td>5,752</td>
</tr>
<tr>
<td>2000</td>
<td>2,335</td>
<td>13,526</td>
<td>5,791</td>
</tr>
<tr>
<td>2001</td>
<td>2,251</td>
<td>13,751</td>
<td>6,108</td>
</tr>
<tr>
<td>2002</td>
<td>2,227</td>
<td>13,947</td>
<td>6,262</td>
</tr>
<tr>
<td>2003</td>
<td>2,191</td>
<td>14,134</td>
<td>6,452</td>
</tr>
<tr>
<td>2004</td>
<td>2,102</td>
<td>13,708</td>
<td>6,522</td>
</tr>
<tr>
<td>2005</td>
<td>2,002</td>
<td>13,634</td>
<td>6,810</td>
</tr>
<tr>
<td>2006</td>
<td>1,979</td>
<td>13,519</td>
<td>6,831</td>
</tr>
<tr>
<td>2007</td>
<td>1,954</td>
<td>13,253</td>
<td>6,783</td>
</tr>
<tr>
<td>2008</td>
<td>1,909</td>
<td>12,965</td>
<td>6,792</td>
</tr>
<tr>
<td>2009</td>
<td>1,857</td>
<td>12,855</td>
<td>6,922</td>
</tr>
<tr>
<td>2010</td>
<td>1,847</td>
<td>13,190</td>
<td>7,141</td>
</tr>
<tr>
<td>2011</td>
<td>1,814</td>
<td>13,407</td>
<td>7,391</td>
</tr>
<tr>
<td>2012</td>
<td>1,812</td>
<td>13,199</td>
<td>7,284</td>
</tr>
<tr>
<td>2013</td>
<td>1,782</td>
<td>13,301</td>
<td>7,464</td>
</tr>
</tbody>
</table>

Change: 69% 98% 142%
Impact of Genetics

- Not a linear increase of production
- 1996 – 2005; Yield up by 161 kgs/yr; BV up 132 kgs/yr → = 82%
- 2005 – 2013; Yield up by 92 kgs/yr; BV up 77 kgs/yr → = 84%
Impact of Genetics (Somatic Cell Count)
Breeding ‘wish list’

- **Farm Needs**
 - Efficient Production
 - Meet milk contract
 - Reduced SCC/mastitis
 - Increase Longevity
 - Improved Fertility
 - Reduced Lameness
 - Easy Calvings

- **Genetic Tools**
 - Milk, Fat and Protein
 - Fat and protein %
 - SCC, Udders
 - Lifespan
 - Fertility Index
 - Locomotion/ feet & leg
 - Calving Ease (d & m)
Standardised Genetic Gains
(based on insemination data)
Can Genomics help us accelerate gains?

<table>
<thead>
<tr>
<th></th>
<th>Traditional (years)</th>
<th>Genomic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second crop daughter proof</td>
<td>6</td>
<td>99%</td>
</tr>
<tr>
<td>Progeny milking</td>
<td>5</td>
<td>90%</td>
</tr>
<tr>
<td>Progeny bred</td>
<td>4</td>
<td>65%</td>
</tr>
<tr>
<td>Progeny born</td>
<td>3</td>
<td>65%</td>
</tr>
<tr>
<td>Semen collected</td>
<td>2</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>DNA analysis</td>
</tr>
</tbody>
</table>

DairyCo
‘Unlocking’ the DNA code

- Using reference group for calibration;
 - Daughter proven bulls + their Genotypes
UK implementation (Holstein)

• (inter)national collaboration through DairyCo
 – UK, ITA, CAN, USA
 – ~23,000 daughter proven bull genotypes

• Bespoke UK Genomic evaluations
 – DairyCo (Production and Fitness) & Holstein UK (Type)
 – Males – April 2012
 – Females – April 2013
Should young sires be used?

- High quality young bulls on offer
 - And get better quick

- Averages £PLI of Top 100 available

<table>
<thead>
<tr>
<th>Top 100</th>
<th>Apr-12</th>
<th>Apr-13</th>
<th>Dec-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young</td>
<td>197</td>
<td>230</td>
<td>246</td>
</tr>
<tr>
<td>Proven</td>
<td>182</td>
<td>197</td>
<td>201</td>
</tr>
<tr>
<td>Difference</td>
<td>15</td>
<td>33</td>
<td>45</td>
</tr>
</tbody>
</table>
Young sire use (Inseminations Jan-2000 to Sep-13)
Application – Beyond breeding

• Genomic testing soon Routine
 – All cows will have genotype

• Traceability
 – Animals and Products

• Opens door for other opportunities
Application – Today (female testing)

• Optimised breeding and Selection
 – Young stock pre-selection
 – Targeted breeding
 • Better ability to improve Health and Fertility traits
 • Choice of Sexed vs Beef semen

• Parentage Verification and Discovery

• Screening for genetic abnormalities
 – Also potential for discovery of ‘new’ recessives
Application – Tomorrow

• Nutritional Genomics
 – (Nutrigenomics)
 – Interaction Genes x Diet

• Personalised Genomic Medicine
 – Determine disease risk (Predisposition)
 – Appropriate therapeutic options
Potential for new trait evaluation

• New indices in development in the UK;
 – Fatty Acids & Protein fractions
 – TB resistance
 – Abattoir carcass traits
 – Feed efficiency (gDMI)

• Genomics increases the need for more data !!
 – And collaboration
Cow of the Future

• What kind of farming operation will we need in 5, 10 or 15 years to be competitive in a global dairy industry?

• What kind of cow is needed for that?

• Have we got the genetic info?

• What tool have we got to help us?
Goals are constantly changing

Selection from traditional ‘dual purpose’

Production - Milk, fat, protein (PIN)

Longevity – incl. Type (ITEM)

‘Fitness’ (£PLI)
National Breeding Goal

• To breed dairy cows which;
 – Thrive in the diverse UK dairy farming systems
 – Show improved health, welfare and productivity

• Such a breeding policy will contribute to a profitable, healthy and environmentally sustainable dairy herd.
£PLI update – August 2014

• Evolution of current £PLI
 – More emphasis on ‘Fitness’
 – Maintaining milk quality (fat and protein %)

• Additional traits added to the index
 – Calving Ease (direct and maternal)
 – Maintenance cost
New £PLI

- Reduce emphasis on Production (~1/3 of £PLI)
 - Less milk, maintain components
- Increased emphasis on Fertility
- Maintain importance of Longevity
- Increase emphasis on Udder Health
- Increased importance of functional type
 - Feet & Legs and Udders
- Include cost of Maintenance and Calving Ease
Introduction of a new index

• Spring Calving Index (£ SCI)

• Targeted towards;
 – Spring calving herds
 – Block calving
 – Extensive use of grass
£SCI

- Focus on milk quality, rather than high volume
 - Maintain Production efficiency with high components
- High emphasis on Fertility
- Recognise the importance of cost of maintenance
- Protect Udder Health
- Value the cost associated with Calving difficulties
- Strong selection on Longevity
- Protect functional type;
 - Feet & Legs and Udders
Breeding for your herd

- Identify areas of Strength and Weakness
- Monitor genetic potential of your herd
- Use on-line DairyCo Herd Genetic Report;
 - Milk (kg), Fat and Protein (kg and %)
 - Inbreeding Level
 - Management Traits - SCC, Lifespan and Fertility
- Set your future breeding goal!
- Use the genetic tools to tailor your future needs
Holstein Herd Standards

Shows the percentile levels required for a herd to be considered in the top 1%, etc, of the population. Herd averages have been calculated from live cows with reliabilities of 30% or more. Each trait has been calculated independently, thus a herd can be in the top 1% for milk yield but be in the top 10% for protein yield.

<table>
<thead>
<tr>
<th>Percentile</th>
<th>£PLI</th>
<th>PTA Milk (kg)</th>
<th>PTA Fat (kg)</th>
<th>PTA Protein (kg)</th>
<th>PTA Fat (%)</th>
<th>PTA Prot (%)</th>
<th>£PIN</th>
<th>Lifespan</th>
<th>SCC</th>
<th>Fertility_index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>73</td>
<td>395</td>
<td>11.8</td>
<td>9.2</td>
<td>0.17</td>
<td>0.10</td>
<td>16</td>
<td>0.3</td>
<td>-8</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>295</td>
<td>8.5</td>
<td>6.5</td>
<td>0.11</td>
<td>0.07</td>
<td>11</td>
<td>0.2</td>
<td>-6</td>
<td>4.1</td>
</tr>
<tr>
<td>10</td>
<td>45</td>
<td>242</td>
<td>7.0</td>
<td>5.3</td>
<td>0.09</td>
<td>0.05</td>
<td>9</td>
<td>0.2</td>
<td>-5</td>
<td>2.7</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>207</td>
<td>6.1</td>
<td>4.6</td>
<td>0.07</td>
<td>0.04</td>
<td>7</td>
<td>0.2</td>
<td>-4</td>
<td>1.9</td>
</tr>
<tr>
<td>20</td>
<td>37</td>
<td>179</td>
<td>5.3</td>
<td>3.9</td>
<td>0.06</td>
<td>0.03</td>
<td>6</td>
<td>0.1</td>
<td>-4</td>
<td>1.5</td>
</tr>
<tr>
<td>25</td>
<td>34</td>
<td>151</td>
<td>4.6</td>
<td>3.4</td>
<td>0.05</td>
<td>0.03</td>
<td>6</td>
<td>0.1</td>
<td>-3</td>
<td>1.1</td>
</tr>
<tr>
<td>30</td>
<td>31</td>
<td>129</td>
<td>4.1</td>
<td>2.9</td>
<td>0.04</td>
<td>0.02</td>
<td>5</td>
<td>0.1</td>
<td>-3</td>
<td>0.9</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>107</td>
<td>3.5</td>
<td>2.4</td>
<td>0.03</td>
<td>0.01</td>
<td>4</td>
<td>0.1</td>
<td>-3</td>
<td>0.6</td>
</tr>
<tr>
<td>40</td>
<td>26</td>
<td>88</td>
<td>3.0</td>
<td>2.0</td>
<td>0.02</td>
<td>0.01</td>
<td>3</td>
<td>0.1</td>
<td>-3</td>
<td>0.4</td>
</tr>
<tr>
<td>45</td>
<td>24</td>
<td>68</td>
<td>2.5</td>
<td>1.6</td>
<td>0.02</td>
<td>0.01</td>
<td>3</td>
<td>0.1</td>
<td>-2</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>51</td>
<td>2.0</td>
<td>1.1</td>
<td>0.01</td>
<td>0.00</td>
<td>2</td>
<td>0.1</td>
<td>-2</td>
<td>0.1</td>
</tr>
<tr>
<td>55</td>
<td>19</td>
<td>29</td>
<td>1.5</td>
<td>0.7</td>
<td>0.00</td>
<td>0.00</td>
<td>1</td>
<td>0.1</td>
<td>-2</td>
<td>-0.1</td>
</tr>
<tr>
<td>60</td>
<td>17</td>
<td>6</td>
<td>0.9</td>
<td>0.2</td>
<td>0.00</td>
<td>-0.01</td>
<td>1</td>
<td>0.1</td>
<td>-2</td>
<td>-0.2</td>
</tr>
<tr>
<td>65</td>
<td>14</td>
<td>-19</td>
<td>0.2</td>
<td>-0.3</td>
<td>-0.01</td>
<td>-0.01</td>
<td>0</td>
<td>0.1</td>
<td>-1</td>
<td>-0.4</td>
</tr>
<tr>
<td>70</td>
<td>11</td>
<td>-45</td>
<td>-0.5</td>
<td>-1.0</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-0.5</td>
</tr>
<tr>
<td>75</td>
<td>7</td>
<td>-78</td>
<td>-1.4</td>
<td>-1.7</td>
<td>-0.02</td>
<td>-0.02</td>
<td>-2</td>
<td>0</td>
<td>-1</td>
<td>-0.7</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>-112</td>
<td>-2.4</td>
<td>-2.6</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-4</td>
<td>0</td>
<td>0</td>
<td>-0.9</td>
</tr>
<tr>
<td>85</td>
<td>-3</td>
<td>-161</td>
<td>-3.8</td>
<td>-3.6</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-5</td>
<td>0</td>
<td>0</td>
<td>-1.1</td>
</tr>
<tr>
<td>90</td>
<td>-11</td>
<td>-226</td>
<td>-5.7</td>
<td>-5.2</td>
<td>-0.05</td>
<td>-0.04</td>
<td>-8</td>
<td>0</td>
<td>1</td>
<td>-1.5</td>
</tr>
<tr>
<td>95</td>
<td>-25</td>
<td>-329</td>
<td>-8.8</td>
<td>-8.0</td>
<td>-0.07</td>
<td>-0.05</td>
<td>-13</td>
<td>0</td>
<td>2</td>
<td>-2.0</td>
</tr>
</tbody>
</table>
The importance of Genetics and Genomic tools in a changing industry

• History has shown us that genetic selection is a powerful tool
 – Very important contributing factor in long term industry performance

• Changing industry requires an evolution of genetic needs
 – E.g. Differentiation of genetics to suit systems (£PLI vs. £SCI)
 – Note; Selection decision today will impact the industry for the next decade

• Genomic tools provide new opportunities
 – Ability to respond to changes more rapidly – incl. New traits
 – Ability to accelerate rate of change
 – Ability to be used as farm management tool

• We need to ensure we utilise its potential